Главная Гальваническое покрытие Обработка поверхности Радиотехника
Бессточные операции Гальвано- химическое производство Достижения

Самые новые
Основы организации современных гальвано-химических производств
Взаимная адаптация технологий гальванического производства и очистки сточных вод
Импульсная металлизация печатных плат
Создание высокоэффективных систем промывки деталей
Утилизация гальванических отходов как гигиеническая проблема
Получение химико-механических цинковых покрытий на высокопрочных термообработанных сталях
Переработка металлургических отходов
Последние достижения в гальванопластике
Обработка промывных вод травильных агрегатов
Экологические перспективные технологии цинкования, кадмирования и меднения
Об утилизации гальванических шламов
Технологии изготовления технологической оснастки и продуктов методом гальванопластики
Россия экспортировала продукции химической промышленности и каучука на 11,3 млн долларов
В октябре экспорт ферросплавов уменьшился на 0,03% до 108,9 тыс. тонн
Мировое производство стали за 10 месяцев 2006 года выросло на 9,2%
Производство алюминия продолжает расти
Химическое производство в России выросло на 1,2%
Китай за 10 месяцев увеличил выпуск медной продукции на 6,6% до 4,6 млн. т
"Антон" - "Северсталь"
Чистая прибыль ОАО "Ульяновский автомобильный завод"
Оценка эфф. подготовки поверхности полистирола перед химической металлизацией
"Российские металлургические компании и ЕС - особые отношения"
Аналитики расходятся во мнениях по прогнозу цен на железную руду
Evraz увеличивает выплаты
Китай вышел на ежемесячный объем экспорта стали
Чистая прибыль Borealis в III квартале выросла в 2,6 раза
"Цинк среди драгоценных металлов"
Росбанк стал держателем 29,33% "Норникеля"
"Северсталь" подорожала на 2.7 миллиарда долларов после вчерашнего IPO
Новая волна слухов на тему консолидации в мировой металлургии
Итоги деятельности химического комплекса за 9 месяцев
Стратегия развития металлургической промышленности
Инженеры в почете
Информационное обеспечение химического комплекса
Дефицит кадров
Спрос на оцинкованную сталь растет
Карта: 1 2 3 4 5 6 7 8 9
10 11 12 13 14
Главная Радиотехника


Мембранная клавиатура


Каждый, кто когда-либо занимался созданием аппаратуры с большим числом коммутационных элементов, знает, насколько она сложна и нетехнологична. Так. на панели современного тюнера-усилителя число переключателей доходит до десятка, а в электронных экзаменаторах, автоматических генераторах сигналов телеграфного кода и пультах персональных ЭВМ оно нередко достигает нескольких десятков и даже сотен. Создание компактной, надежной и простой в изготовлении клавиатуры представляет значительную трудность. Между тем существуют весьма несложные конструкции коммутационных узлов, позволяющие существенно упростить изготовление клавиатуры.

Одной из таких конструкций является так называемая мембранная клавиатура. Она состоит из. трех основных элементов (1): подложки 1, прокладки 2 и металлизированной мембраны 3. Подложка представляет собой печатную плату, на которой сформированы неподвижные контакты. Подвижные контакты образованы металлизацией на мембране 3, изготовленной из тонкой - 0,1...0,2 мм - диэлектрической (например лавсановой) металлизированной пленки. Всю конструкцию фиксирует прижимная рама 4, изготовленная из листового диэлектрика или металла.





1
На внешнюю сторону мембраны наносят маркировку клавиш или соответствующие пиктографические знаки. Между подложкой и мембраной помешают прокладку с отверстиями под каждой клавишей, позволившими подвижному и неподвижному контактам замкнуться при нажатии на мембрану. Толщину прокладки, определяющей зазор между контактами, обычно выбирают в пределах 0,3...0,8 мм. Прокладку можно изготовить из любого изоляционного листового материала.

Такой клавиатуре характерно усилие замыкания около 0,5...2 Н. контактное сопротивление 0,1 ...50 Ом; она весьма хорошо согласуется с электронными узлами управления аппаратурой. Как видно из рисунка, клавиатуру можно сделать весьма тонкой (менее 2 мм) и при необходимости наклеить на переднюю панель аппарата. Герметичное исполнение клавиатуры обеспечивает надежность работы контактных групп в различных условиях эксплуатации. Хотя контактура может состоять из независимых контактных пар, в наибольшей мере ее преимущества проявляются при матричной адресации клавиш, когда металлизация на мембране и подложке выполнена в виде полос-линий, общих сразу для нескольких контактов.

Рассмотрим особенности алфавитно-цифровой мембранной клавиатуры, предназначенной для введения стандартного набора символов в генератор телеграфных сигналов или микро-ЭВМ.

Клавиатура имеет 79 пар контактов и совместно с электронным блоком - контроллером клавиатуры - формирует на выходе стандартный семиразрядный двоичный код символов русского и латинского алфавитов, и коды служебных символов в соответствии с таблицей КОИ-7. Для контроля правильности передачи контроллер формирует один разряд дополнения числа бит до четного.

Чертеж печатной платы-подложки, изготовленной из фольгированного стеклотекстолита толщиной 0,5...2 мм, показан на 2, а. Расположение клавиш и расстояния между центрами клавишных площадок в ряду и между рядами лучше всего выбрать близкими к стандартным. Кроме клавишных площадок, на краю платы расположены квадратные площадки, через которые в собранной контактуре выведены линии-проводники мембраны. Мембрана в зоне квадратных площадок плотно прижата к подложке.





2
Мембрана вырезана из алюминированной лавсановой пленки толщиной 52 мкм. Раствором (10%-ным) едкого натра с помощью кисточки с пленки стравливают лишнюю металлизацию и оставляют только проводники линий (показаны черным на 2, б).

Прокладка общей толщиной около 0,2 мм изготовлена из двух слоев плоской фототехнической пленки. В прокладке вырезаны круглые отверстия диаметром около 18 мм. Под удлиненные клавиши (Пробел и др.) отверстия в прокладке делают в виде щелей. Ширина прокладки должна быть такой, чтобы она прикрывала только поле клавишных (круглых и прямоугольных) площадок на подложке. Маркировку клавиш можно нанести на внешнюю сторону мембраны, защитив ее дополнительным слоем прозрачной лавсановой пленки. Для этой цели пригодна липкая пленка для оклейки обложек книг.

Детали клавиатуры накладывают одна на другую, выравнивают и сжимают в пакет рамой, под которую прокладывают полосу поролона толщиной 1...2 мм. При этом проводники мембраны соединяются с квадратными площадками подложки. Для соединения клавиатуры с электронным блоком на подложке предусмотрены монтажные площадки с отверстиями. Для уменьшения окисления контактов в цикле эксплуатации собирать клавиатуру желательно в сухом помещении.

Перед сборкой рабочую поверхность подложки следует отполировать абразивной пастой или мелом, тщательно промыть этиловым спиртом или ацетоном, а если есть возможность - нанести покрытие контактных площадок, например, сплавом Вуда. Небольшие неровности мембраны можно исправить, нагрев собранную клавиатуру до 100...150 °С в духовом шкафу. Для герметизации по периметру собранной клавиатуры можно нанести клей Эластосил или силиконовую пасту СБ-1.

Коды символов, изображенных на клавишах, формирует контроллер (его схема показана на 3), последовательно опрашивающий все клавиши с частотой около 80 Гц. Для этого в контроллере предусмотрен счетчик DD2, DD3, подсчитывающий импульсы тактового генератора, собранного на триггере Шмитта DD1.1 и работающего на частоте около 20 кГц. Число, записанное в счетчике, определяет адрес клавиши в матрице клавиатуры, т. е. номер горизонтальной (соединенной с одним из входов А-Е мультиплексора DD6) и вертикальной (соединенной с одним из выходов 0-15 дешифратора DD5) линий, на перекрестии которых находится замкнутая пара контактов нажатой клавиши.


Puc.3
Для опроса клавиатуры дешифратор четырех младших разрядов адреса DD5 поочередно устанавливает низкий уровень на одной из линий мембраны клавиатуры, а мультиплексор DD6 в соответствии со значением трех старших разрядов адреса подключает одну из линий подложки к входу S триггера DD4.2. Если пара контактов, адрес которой записан в счетчике, разомкнута, на выходе мультиплексора установится высокий уровень напряжения, следовательно, состояние триггера не изменится. Как только в цикле опроса будет найдена замкнутая пара контактов, на прямом выходе мультиплексора DD6 появится сигнал 0, который установит триггер DD4.2 в единичное состояние. Одновременно в текущем цикле опроса через транзистор VT1 разрядится конденсатор С4, заряженный до напряжения источника питания. В этот же момент буферный регистр DD8 запоминает код, соответствующий нажатой клавише [1].

Для преобразования адреса клавиши в стандартный код применено постоянное запоминающее устройство DD7 с прожигаемыми перемычками [2]. В нем хранится таблица соответствия адреса клавиши, поступающего из счетчика контроллера клавиатуры, коду КОИ-7 и значения разряда контроля четности. Применение ПЗУ для перекодирования позволяет подключать клавиши в матрице произвольно, исходя из удобства монтажа.

Как только триггер DD4.2 будет установлен в состояние 1, низкий уровень напряжения на входе DS0 регистра DD8 разрешит запись в него кода клавиши. После записи кода на выходе INT регистра DD8 появится высокий уровень - сигнал OBF,- сигнализирующий о необходимости передачи кода из контроллера клавиатуры в устройство-приемник информации., приемник информации считывает по линиям DO-D7 код клавиши и по завершении операции выдает в контроллер импульс Принято, означающий возможность приема следующего кода.

Такой вид асинхронного обмена информацией называют обменом с квитированием. Для того чтобы запретить изменение кода на выходе контроллера до считывания его приемником, низкий уровень сигнала Готовность поступает через диод VD2 на вход инвертора DD1.2 и не позволяет принять следующий код нажатой клавиши до тех пор, пока приемник информации не ответит сигналом STR (Принято). Способ борьбы с дребезгом контактов в контроллере полностью идентичен описанному в [3].

Как уже упомянуто, таблица кодов клавиш записана в ППЗУ. Для упрощения формирования кодов верхнего и нижнего регистров клавиатуры в запоминающем устройстве есть две области (страницы), выбираемые значением разряда адреса А7, т. е. состоянием триггера DD4.1. На первой из них размещена таблица для символов верхнего, а на второй - нижнего регистра. Переключение триггера происходит после нажатия клавиш HP и ВР соответственно.

В схеме использованы микросхемы: К155ИЕ5, К155ИД3, К155ТМ2, КР556РТ5, К589ИР12, К555ТЛ2, К155ИП7.

В клавиатуре имеются функциональные клавиши 1-16 и клавиши управления курсором, коды которых могут быть назначены при программировании (прожигании) ППЗУ. Для прожигания можно воспользоваться ручным программатором [4], в котором следует удалить конденсатор, шунтирующий выводы питания программируемой микросхемы, а число переключателей, задающих адрес, увеличить до восьми.

Кроме упомянутых, контроллер клавиатуры может формировать специальные управляющие коды в пределах 00H-1FH, при одновременном нажатии клавиши У и одной из алфавитных клавиш. При этом таблица кодов для клавиш переключается разрядом А8 ППЗУ.

В заключение следует заметить, что мембранная клавиатура, изготовленная в любительских условиях по описанной технологии, имеет относительно низкую износостойкость из-за крайне тонкого алюминиевого покрытия мембраны, поэтому при интенсивной эксплуатации мембрану приходится периодически заменять.


ЛИТЕРАТУРА

1. Березенко А. И., Корягии Л. И., Назарьян А. Р. Микроциклорные комплекты повышенного быстродействия.- М.: Радио и связь, 1981.

2. Лукьянов Д. А. ПЗУ - универсальный элемент радиоэлектронной аппаратуры.- Микроциклорные средства и системы. 1986, М 1.

3. А. Кузнецов, Д. Митрий, Б. Печатнов. Клавиатурный интерфейс и тональный генератор ЭМС.-Радио, 1985, 4.

4. А. Пузанов. ПЗУ в спортивной аппаратуре.- Радио. 1982, N 1.

Источник: РАДИО N 12, 1986 г., c.40-42

Автор: Д. ЛУКЬЯНОВ


Читайте далее: Аналоговые сенсорные экраны, Восьмиразрядные RISC микроконтроллеры ATMEL и MICROCHIP: два подхода., Датчики давления с нормализованным выходным сигналом фирмы Motorola, Защитные диоды TRANSIL, TRISIL, TVS, Интерфейс USB, Контроллеры для автоматизации крупных промышленных объектов, Метод вырезания отверстия под вентилятор, Микроконтроллеры MSP430 компании Texas Instruments c Flash-памятью., Можно ли помочь разработчику?, Об эмуляторе таксофонных карт для начинающих. Часть 2, Новый обзор электронных ключей-идентификаторов iButton от фирмы Dallas Semiconductor, Обрежьте жирок с RS-485, Описание интерфейса MIDI, Оптоэлектронные интегральные схемы - это просто, как оптопара, Отладка программы микроконтроллера семейства MCS-51 с помощью эмулятора ПЗУ, Полноцветные светодиоды Chameleon Kingbright, Подключите свой тостер к Интернет!, Последовательный интерфейс RS-485, Правильная разводка сетей RS-485,
Самые читаемые