Главная Гальваническое покрытие Обработка поверхности Радиотехника
Бессточные операции Гальвано- химическое производство Достижения

Самые новые
Основы организации современных гальвано-химических производств
Взаимная адаптация технологий гальванического производства и очистки сточных вод
Импульсная металлизация печатных плат
Создание высокоэффективных систем промывки деталей
Утилизация гальванических отходов как гигиеническая проблема
Получение химико-механических цинковых покрытий на высокопрочных термообработанных сталях
Переработка металлургических отходов
Последние достижения в гальванопластике
Обработка промывных вод травильных агрегатов
Экологические перспективные технологии цинкования, кадмирования и меднения
Об утилизации гальванических шламов
Технологии изготовления технологической оснастки и продуктов методом гальванопластики
Россия экспортировала продукции химической промышленности и каучука на 11,3 млн долларов
В октябре экспорт ферросплавов уменьшился на 0,03% до 108,9 тыс. тонн
Мировое производство стали за 10 месяцев 2006 года выросло на 9,2%
Производство алюминия продолжает расти
Химическое производство в России выросло на 1,2%
Китай за 10 месяцев увеличил выпуск медной продукции на 6,6% до 4,6 млн. т
"Антон" - "Северсталь"
Чистая прибыль ОАО "Ульяновский автомобильный завод"
Оценка эфф. подготовки поверхности полистирола перед химической металлизацией
"Российские металлургические компании и ЕС - особые отношения"
Аналитики расходятся во мнениях по прогнозу цен на железную руду
Evraz увеличивает выплаты
Китай вышел на ежемесячный объем экспорта стали
Чистая прибыль Borealis в III квартале выросла в 2,6 раза
"Цинк среди драгоценных металлов"
Росбанк стал держателем 29,33% "Норникеля"
"Северсталь" подорожала на 2.7 миллиарда долларов после вчерашнего IPO
Новая волна слухов на тему консолидации в мировой металлургии
Итоги деятельности химического комплекса за 9 месяцев
Стратегия развития металлургической промышленности
Инженеры в почете
Информационное обеспечение химического комплекса
Дефицит кадров
Спрос на оцинкованную сталь растет
Карта: 1 2 3 4 5 6 7 8 9
10 11 12 13 14
Главная Обработка поверхности


Современные теплоизоляционные материалы для строительства


Введение новых, более жестких, нормативов по энергосбережению вызвало необходимость радикального пересмотра принципов проектирования и строительства зданий, так как применение традиционных для России строительных материалов и технических решений не обеспечивает требуемое по современным нормам термическое сопротивление наружных ограждающих конструкций зданий.

В новом строительстве все большее распространение получают трехслойные конструкции стен, в которых предусмотрено применение эффективных утеплителей в качестве среднего слоя между несущей или самонесущей стеной и защитно-декоративной облицовкой.

Рациональным и эффективным способом повышения теплозащиты эксплуатируемых зданий является дополнительное наружное утепление их ограждающих конструкций.

Существующие варианты утепления зданий отличаются как конструктивными решениями, так и используемыми в конструкциях материалами.

Физико-технические свойства используемых теплоизоляционных материалов оказывают определяющее влияние на теплотехническую эффективность и эксплуатационную надежность конструкций, трудоемкость монтажа, возможность ремонта в цикле эксплуатации и в значительной степени определяют сравнительную технико-экономическую эффективность различных вариантов утепления зданий.

Теплоизоляционные материалы в конструкциях утепления зданий должны соответствовать требованиям пожарной безопасности, иметь гигиенические сертификаты, не выделять токсичные вещества в цикле эксплуатации и при горении.

На долговечность и стабильность теплофизических и физико-механических свойств теплоизоляционных материалов в конструкциях утепления зданий влияют многие эксплуатационные факторы, включая:

- знакопеременный температурно-влажностный режим теплоизоляционных конструкций;

- возможность капиллярного и диффузионного увлажнения теплоизоляционного материала в конструкции;

- воздействие ветровых нагрузок;

- механические нагрузки от собственного веса в конструкциях стен и нагрузки при перемещении людей в конструкциях крыш и перекрытий.

С учетом указанных факторов теплоизоляционные материалы для утепления зданий должны отвечать следующим основным требованиям:

- теплоизоляционный материал должен обеспечивать требуемое сопротивление теплопередаче при возможно минимальной толщине конструкции, что достигается применением материалов с расчетным коэффициентом теплопроводности - 0,04-0,06 Вт/(м2·К);

- паропроницаемость материала должна иметь значения, исключающие возможность накопления влаги в конструкции в цикле ее эксплуатации;

- плотность теплоизоляционных материалов для утепления зданий ограничивается допустимыми нагрузками на несущие конструкции;

- прочность материала;

- морозостойкость;

- гидрофобность и водостойкость;

- биостойкость и отсутствие токсичных выделений при эксплуатации.

Для теплоизоляционных материалов из стеклянного волокна, применяемых в наружных ограждающих конструкциях зданий, особенно важным является показатель водостойкости. Учитывая возможность периодического увлажнения теплоизоляционных материалов в конструкции, показатель водостойкости в значительной степени определяет их долговечность.

Водостойкость стеклянных волокон существенно зависит от химического состава и диаметра волокна. Увеличение содержания щелочных окислов и уменьшение диаметра волокна приводит к снижению водостойкости материала.

Учитывая относительно невысокую водостойкость стеклянных волокон щелочного состава, при разработке конструкций с применением теплоизоляционных материалов из стекловолокна следует предусматривать технические решения, ограничивающие деструктивное воздействие влаги на материал в цикле эксплуатации. К таким решениям относятся гидрофобизация материалов в цикле производства и применение конструктивных решений, предотвращающих или ограничивающих возможность конденсации влаги в конструкции.

За счет гидрофобизации волокнистых материалов снижается их смачиваемость, т. е. уменьшается поверхность взаимодействия волокон с капельной влагой, что приводит к повышению водостойкости и, соответственно, долговечности материала. Предотвращение конденсации паров воды в конструкции достигается конструктивными решениями, а именно соответствующим расположением слоев материалов с различной паропроницаемостью и введением при необходимости дополнительных паровых барьеров, предотвращающих или ограничивающих конденсацию. В качестве барьеров рекомендуется использовать специальные материалы - паро- и гидроизоляционные пленки. Это необходимо для того, чтобы избежать проникновения водяных паров в утеплитель (пароизоляция УНИФОЛ Н), и обеспечить вывод из утеплителя возможных накопившихся водяных паров и не допустить попадания влаги (гидроизоляция ТАЙВЕК). Дело в том, что при попадании влаги в утеплитель резко ухудшаются его теплоизолирующие свойства и сокращается срок службы. Гидроизоляция ТАЙВЕК одновременно служит и ветрозащитой, т. е. предохраняет от конвективного переноса тепла (продувания).

Толщина утеплителя выбирается на этапе проектирования, исходя из полученных значений теплового расчета по новым нормам для каждого конкретного объекта утепления.

Далее более подробно остановимся на отдельных наиболее широко применяемых теплоизоляционных материалах в строительстве.

Изделия на основе минерального волокна. Утеплитель на основе минерального (базальтового) волокна представляет собой материал, получаемый из силикатных расплавов горных пород, металлургических шлаков и их смесей. Он обладает механической и химической стойкостью, является негорючим и водоотталкивающим, имеет хорошие изолирующие свойства в широком температурном диапазоне.

Данный вид утеплителя относится к группе несгораемых (НГ) строительных материалов (выдерживает температуру более 1000°С); является гидрофобизированным изоляционным материалом.

Наиболее известными на российском рынке являются утеплители PAROC (Финляндия) и ROCKWOOL (Россия-Дания). Поставляется в плитах.

Изделия на основе стекловолокна. На на данный моментшний день утеплители на основе стекловолокна являются наиболее универсальными как по цене, так и по своим теплоизоляционным свойствам. При производстве утеплителей применены современные технологии волокнообразования и высококачественные связующие, не позволяющие материалу колоться и сыпаться. Утеплители на основе стекловолокна являются гигроскопичными, т. е. впитывают влагу из воздуха и требуют надежной паро- и гидроизоляции. Представлены фирмой ISOVER (Финляндия). Поставляются в рулонах и плитах.

Изделия из пенополистирола. В строительстве используется пенополистирол двух типов - плиты пенополистирольные и экструдированный пенополистирол.

Пенополистирольные плиты получаются вспениванием и свариванием гранул полистирола между собой при нагревании водой или паром. Наиболее популярными являются марки ПСБ-С-10, ПСБ-С-15 (самозатухающий) с плотностью около 10 кг/м3 и 15 кг/м3 соответственно.

Экструдированный пенополистирол (Styrofoam, США) - материал с равномерной структурой закрытых мелких ячеек. Имеет высокое сопротивление диффузии водяных паров и капиллярному поглощению. Прочность экструдированного пенополистирола превосходит прочность множественных широко применяемых теплоизоляционных материалов, поэтому он особенно часто используется при устройстве "теплых полов" и эксплуатируемых крыш. При плотности около 30 кг/м3 материал выдерживает равномерную нагрузку более 20 т/м2 при 5%-ном линейном сжатии.

Пенополистирол - горючий материал с максимальной температурой эксплуатации не более 100°С, что ограничивает его применение в строительных конструкциях.

Изделия из фольгированного пенополиэтилена. Отражающая изоляция ПЕНОФОЛ представляет собой многослойный материал, состоящий из вспененного полиэтилена и алюминиевой фольги. Эффект изоляции определяется как низкой теплопроводностью пенополиэтилена, так и высокими отражающими характеристиками фольги.

ПЕНОФОЛ предназначен для тепло-, шумо- и пароизоляции ограждающих конструкций зданий; тепловой изоляции воздуховодов и трубопроводов систем холодного и горячего водоснабжения, систем отопления помещений, саун.

Отражающая изоляция уменьшает передачу лучистой энергии за счет отражения инфракрасной части излучения поверхностью фольги. При использовании утеплителя ПЕНОФОЛ в качестве тепловой изоляции он располагается так, чтобы слой фольги был обращен внутрь помещения. Обязательным условием эффективного действия ПЕНОФОЛа является наличие воздушного зазора от фольгированной поверхности утеплителя до поверхности ближайшей конструкции не менее 2 см. Допустимая температура применения - от -60°С до + 100°С.

Основные характеристики вышеперечисленных утеплителей приведены в таблице.


Читайте далее: Выбираем стеклопакет, Зонирование кухни, Кирпич - самый популярный строительный материал, Защитно-гидрофобизирующее покрытие (гидропокрытие) "Новь" и смывочный раствор для высолов, Теплые стены, Новые технологии защиты фасадов зданий, Домашний зимний сад, Скандинавский стиль дома, Современные системы гидроизоляции для ванных комнат, Декоративный искусственный камень, Мрамор - блестящий камень, Многофункциональные душевые кабины, Электрический рубанок, Обойдемся без лишнего шума, Шумозащитные двери, Мощеный дворик за домом, Плита из цемента и древесной стружки (ЦСП), Сухие смеси для качественного ремонта, Гидромассаж и хромотерапия - лечение водой и цветом,
Самые читаемые